
Australasian Medical Journal [AMJ 2013, 6, 1, 19-22]

19

REVIEW

The technical creation of the software product is not that

difficult; given enough time and free access to the

 internet, anyone with any aptitude for it can write almost

Please cite this paper as: Holmes M. Everything a medical

innovator needs to know about developing software. AMJ

2013, 6, 1, 19-22. http://doi.org/10.21767/AMJ.2013.1579

Corresponding Author:

Marcus Holmes

Email: mfhholmes@gmail.com

Abstract

Software development is hard enough for specialist software

companies to get right. For people outside the industry it can

be a minefield full of hidden surprises. This articles hopes to

explain why software development is so hard, how to go

about approaching a software development project, and how

to get the best out of any collaboration with a development

team. It should be read by anyone who is considering

developing a software product, including websites, from a non-

development.

Key Words

Software development, Agile methodology, Software product

Introduction
The majority of software development projects fail. Software

project failure happens when the result of the development

project does not meet the expectations of the project

sponsors; when the benefits of the software are not perceived

to exceed the costs of development. There can obviously be

many reasons for this, but they are almost all human, social

reasons instead of technical reasons. In this article I attempt

to outline an approach based on recent developments in the

'agile' software development methodology that reduces the

risks of failure and allows doomed projects to be caught early.

The article addresses the typical commercial startup scenario

of an innovator with medical expertise, but no software

development expertise, who needs a software product

developed (a phone app, a website, a desktop application, or

any other software product) by a third-party development

team.

any software system. The difficult parts are to do with

communication, expectations and change:

 There is an understanding gap between the

innovator (that is you) and the software

developer, because the developer has no

medical experience and you (presumably) have

no development experience. This understanding

gap leads to assumptions being made on both

sides, which causes delays and defects in the

software. Closing this understanding gap takes a

lot of very good, very clear communication.

 The expectations of innovators are usually

unrealistic when viewed from the perspective of

a developer. This is usually because software

development is expected to be a deterministic

process, when it is in fact a creative design

process and therefore subject to a lot of

variance. Two developers will not write software

the same way, in the same timeframe, or with

the same results. Therefore it is not possible at

the start of the project to determine the result at

the end of the project.

 Software projects are subject to enormous

amounts of change. This change comes from

many different sources, but the most common is

'requirements creep'; the tendency for the

requirements of a piece of software to change as

the project proceeds. Requirements creep is a

natural and unavoidable part of the development

process, caused by the growing familiarity of the

innovator and developer with the software, and

the resulting changes in their perception of the

best way to develop it.

A common preconception about software development is

that it resembles housing construction: a detailed plan is

drawn up, the developer proceeds to build the structure

according to the plan and completes it after a definite

amount of time, handing the completed structure over to

the customer and leaving the project. Whilst there are

software projects that can be built on this basis, they rely

on a stable set of requirements and a thorough

Everything a medical innovator needs to know about developing software

Marcus Holmes

http://doi.org/10.21767/AMJ.2013.1579
mailto:mfhholmes@gmail.com

Australasian Medical Journal [AMJ 2013, 6, 1, 19-22]

20

understanding of the problem by the whole team. These

conditions do not apply to innovative software products and

so a different approach is needed (an example of such a

comparison at British Telecom).
1

The standard analogy used for this approach is that of building

a pyramid. A pyramid builder is tasked with building a pyramid

before his Pharaoh dies. He could start from the bottom and

build up, and hope the Pharaoh does not die before he

finishes, or he can build a small working pyramid and then

enlarge it until the Pharaoh dies, at which point he is

guaranteed to have a working pyramid.
2

This inability to have

a predictable project because of the inherent unpredictability

of the Pharaoh's lifespan mirrors an innovative software

project, where the fact that it is innovative also means it is

inherently unpredictable. Martin Fowler, one of the leading

lights of the Agile movement has talked about the

unpredictability of requirements.
3

The agile methodology

deals with this unpredictability by making the smallest

possible working version of the software and then adding to it

in small steps or iterations. As the old joke has it; to eat an

elephant you must take one bite at a time.

So as a medical innovator attempting to produce a software

product, you probably find this approach can be difficult to

understand. The basic process is:

 Start as small as possible; identify the most important

function of your application, and concentrate on

that.

 Build a 'user story' of how the user will interact with

the application to use this one function. An example

of a user story is given in Appendix 1.

 The developer builds this one function, and you

assess with them how this works and if necessary

refine it until it works to your satisfaction.

 Move on to the next function. Write another user

story for how this function works and interacts with

the first function. Hand it to the developers to write,

then review it with them.

 Repeat this feedback loop until the system is able to

be used for the purpose it was intended, then add

user feedback to the loop. Find some test users and

put the software in front of them and record their

comments, suggestions and complaints. Adjust your

'user stories' to correct for the user's feedback.

 Each turn around the loop should be no more than 5-

10 days, and the entire software program must be

delivered for each loop (so full source code and an

executable that runs or a website that works). Any

defects or bugs need to be listed and

communicated with the developer, and must be

fixed first before any new functionality is added.

This process of defining small sections of functionality,

and then delivering them completely, ensures a few very

important things in the development:

 the development is constantly focused on

delivery of working software. You are never stuck

with a pile of useless expensive code that does

not do anything.

 requirements (derived from your understanding

of the subject area and user needs) are refined

as the software is built, reflecting the actual use

of the software by users;

 defects are spotted early and fixed early;

 if the software is not going to work as planned,

for whatever reason, this is identified early

before too much effort and money is wasted.

However, the method does make explicit the implicit

uncertainties involved in software development, and you

will not be able to set a definite budget before the project

starts, or know exactly how long it will take. Large

organisations can have problems with this approach.
4

This process of defining a function and then reviewing it

once completed involves a lot of communication. As the

'subject matter expert' you will need to communicate

your understanding of the subject area to developers who

probably have no experience with it at all. Likewise your

technical knowledge of software development is probably

limited and you will need to listen to highly technical

explanations of possibly development options in order to

understand the issue and make decisions during

development. Please try to understand the issues,

because from a developer's point of view there is nothing

worse than being told 'whatever you think works best is

OK' only to then find out that actually that decision was

important and we made the wrong choice. There are no

stupid questions, but there are stupid assumptions.

As communication is so important to the process, it is

obviously essential to get the right development team.

The clearer you can communicate with the team, the

better the project will go. For this sort of development,

good communication skills are more important than

strong technical skills, as more time is wasted through

miscommunication than through slow development. If

you are using local developers, then ask to actually meet

Australasian Medical Journal [AMJ 2013, 6, 1, 19-22]

21

with the team and talk about the project with them. If you are

using offshore developers, ask to hold a teleconference with

the development team (and if you do not share a language

with the team, be prepared to spend a huge amount of time

clarifying your user stories with them). Your 'gut feel' about

these people is important, and you should be able to respect

and trust the team to be doing their best for your project.

A software product is rarely 'finished', in that there are always

updates and new releases to be made, and users will need

support. You will need to consider this before finalising your

business model; do not expect to sell a copy of your software

to a customer and have no further interaction with them, this

just does not happen (consider how often your phone apps

update: you will need to maintain a similar release schedule

for your software product). Likewise, do not expect to have

your development team write your software and then walk

away. It is much better to have the original team continue to

be involved with the updates and support than to try and

transfer the code base to a new team to maintain (they will

almost certainly want to rewrite large chunks of the code to

suit their style). So your relationship with the development

team is likely to be a long one, and therefore prioritising the

ability to communicate with them makes good sense over this

long time period.

The commercial relationship must also be very clear and

defined by a contract. Do not engage with a development

team without a formal contract, it is just asking for trouble.

Generally speaking the standard commercial arrangement is

that a deposit is payable up front, with payments after that on

completion of each feature or phase. Usually the developers

will quote a fixed price to deliver each feature, although some

will charge per hour (though ensure that if they charge per

hour there are some clear clauses about what happens if their

estimates are inaccurate). Other items to be aware of in the

contract are:

 Copyright of the entire source code is clearly

assigned to you. If the development team is planning

to use a framework that is owned by them (or a third

party) then ensure that the contract includes a non-

revocable licence to use the framework for the

product, and that the contract clearly delineates

what code will be owned by which parties. It goes

without saying, but if the development team is

planning to re-use code paid for by you for other

customers then you should not be paying the full cost

for this development.

 Likewise, ensure that ownership of any domain

names, brands, trademarks, and other intellectual

property is clearly owned by you, or clearly not

being paid for by you.

 If the project is a web site or otherwise requires

hosting, that the host is a third party and not the

development team. This is really important, as

the ongoing hosting of the site needs to be

independent of your relationship with the

developers. The developers may host a

development version of the site used during the

project, but delivery of each project phase must

include implementation of the site to your

hosting provider.

 Responsibility for bug fixing and defect

remediation is clearly defined. Not only the

actual fixing of the code, but also bug tracking,

customer communication and post-fix releases.

Do not expect the development team to fix bugs

for free once the product has been signed off,

but agree a reasonable plan for post-release

bugs. This is usually covered by a maintenance

and support agreement with the developer, for

an annual fee.

 What happens when third-party skills need to be

sourced. Talk over the scope of the application

with the development team and identify any

areas that might be outside their expertise, and

work out a plan to cover those gaps. It is usually

easier for the developers to source the required

expertise and incorporate it into the team, but

even if not then make sure there is a clear clause

about how any third parties are incorporated

into the project.

Obviously, this is not legal advice and you should get a

lawyer to advise you on the legal implications of any

contract negotiations.

Lastly, developers are almost always craftsmen. They (we)

really take pride in our work, and are usually driven to

create elegant, functional, attractive, useful systems that

users will enjoy experiencing. Your project will go much

smoother if you treat the developers as craftsmen, as part

of a team that includes you, engaged in a co-operative

process to build, together, something that will create

value. Developers do not tend to do hierarchical

relationships or command structures well, and attempting

to manage them by authority will tend to produce worse

results than managing them through mutual respect and

professional pride.

Australasian Medical Journal [AMJ 2013, 6, 1, 19-22]

22

So to maximise your chances of your software development

succeeding; take an iterative approach to delivery of the

software, get it up and running every 1-2 weeks. Start with the

core functionality and expand outwards, including some

actual users as early as possible. Prioritise communication in

your selection and management of the team, and be prepared

to deal with the uncertainty inherent in the process. And good

luck! Building and selling a software product successfully is a

deeply satisfying experience.

Appendix 1: A User Story

User stories are narratives that describe the user's interaction

with the system to be built. They don't describe what the

system does, they just describe what the user does and

expects to see.

A typical user experience is logging into a system. The user

stories for this experience might look like:

“Users have a user name and a password to log in to

the system. The user specifies both the user name

and password”

“If a user has forgotten their password, they need an

alternative mechanism for authenticating”

“The password must be secure and not able to be

intercepted, and the authentication process must not

be able to be eavesdropped by a third party”

These stories are written by the customer of the system,

usually in conversation with the developers, or as part of the

initial brief for the system. The stories are then fleshed out by

questions from the developers and further clarified, so for

instance:

“Users have a user name and a password to log in to

the system. The user specifies both the user name

and password. The user name must be at least 6

characters long, and the password must be at least 6

characters long, with at least one Upper-case, one

lower-case and one numeric character in it.”

“If a user has forgotten their password, they can ask

to have the password emailed to their email address.

The email address must be specified when the

account is created, and a confirmation email sent to

it to ensure that the email address is valid.”

“The password must be secure and not able to be

intercepted, and the authentication process must not

be able to be eavesdropped by a third party. The

system must not store passwords in cleartext in

the database.”

Once the stories have enough detail to be built, they are

then implemented in the system and reviewed by the

customer. There may well be further refinements to the

story (now a feature of the system) once the customer

actually gets to use the implemented feature.

References

1. Evans I. Agile Delivery at British Telecom.

Method & Tools. Summer 2006. Available from:

http://www.methodsandtools.com/archive/archi

ve.php?id=43

2. Mayo J. Two ways to build a pyramid.

Information Week. 2001. Available at:

http://www.informationweek.com/two-ways-to-

build-a-pyramid/6507351.

3. Fowler M. The New Methodology. 2005.

Available at:

http://martinfowler.com/articles/newMethodolo

gy.html#TheUnpredictabilityOfRequirements.

4. US Govt General Accounting Office. Effective

Practices and Federal Challenges in Applying

Agile Methods 2012. Available at:

http://www.scribd.com/doc/101495164/SOFTW

ARE-DEVELOPMENT-Effective-Practices-and-

Federal-Challenges-in-Applying-Agile-Methods.

PEER REVIEW
Not commissioned. Externally peer reviewed.

CONFLICTS OF INTEREST
The authors declare that they have no competing

interests

http://www.methodsandtools.com/archive/archi
http://www.informationweek.com/two-
http://martinfowler.com/articles/newMethodolo
http://www.scribd.com/doc/101495164/SOFTW

