

Assessment of knowledge and awareness of vitamin D among physicians and

students of healthcare in Jeddah, Saudi Arabia

Osama Safdar¹, Ohoud Baajlan², Aliaa Alamri², Reham Dahmash², Alaa Alloush², Renad Ateeq², Shatha Albokhari³, Zaher F Zaher³, Maha Alghamdi³, and Hasan Jiffri³

1. Pediatric Nephrology Center of Excellence, Faculty of Medicine King Abdulaziz University, Jeddah, Saudi Arabia

2. Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia 3. Pediatric Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

RESEARCH

Please cite this paper as: Safdar O, Baajlan O, Alamri A, Dahmash R, Alloush A, Ateeq R, Albokhari S, Zaher ZF, Alghamdi M, Jiffri H. Assessment of knowledge and awareness of vitamin D among physicians and students of healthcare in Jeddah, Saudi Arabia. AMJ 2019;12(5):143– 153. https://doi.org/10.35841/1836-1935.12.5.143-153

Corresponding Author:

Osama Y Safdar Pediatric Nephrology Center of Excellence, Faculty of

medicine King Abdulaziz University, Jeddah, Saudi Arabia Email: safderosama@hotmail.com

ABSTRACT

Background

Vitamin D deficiency is now considered to be a widespread epidemic. A poor level of knowledge and an inadequate level of awareness are two of the main risk factors for vitamin D deficiency.

Aims

This study aimed to assess the level of awareness and knowledge about vitamin D deficiency and identify factors associated with the level of awareness among healthcare workers and healthcare professional students.

Methods

From September 2017 to March 2018, a self-administered questionnaire was used to collect data among physicians and students of healthcare in Jeddah, Saudi Arabia.

Results

Of 529 participants, 320 (60.5 per cent) were students and 209 (39.5 per cent) were healthcare workers. The overall mean knowledge scores (maximum score=35) were 20.0±5.5 (58.8 per cent) among healthcare workers and 15.9±5.5 (46.8 per cent) among students. Most healthcare workers and healthcare professional students stated that vitamin D is used to treat bone disease and rickets (96.2 per cent and 89.4 per cent, respectively), maintain calcium and phosphate levels (95.2 per cent and 87.8 per cent, respectively), and strengthen immunity (68.3 per cent and 60.9 per cent, respectively). Most healthcare workers (94.7 per cent) and students (91.5 per cent) stated that osteoporosis is a result of vitamin D deficiency.

Less than half of healthcare workers (38.3 per cent) and less than quarter of healthcare professional stated that vitamin D reduces the risk of diabetes. Only 13.1 of healthcare professional and 11.6 per cent of healthcare professional stated that vitamin D reduces the risk of premature birth. However, less than one-third of workers and one-fifth of students were aware of the correct dose.

Conclusion

This study highlighted the lack of knowledge regarding vitamin D deficiency among healthcare professional students and healthcare workers in Jeddah, Saudi Arabia. There was a significant association between the level of knowledge and position. More continuing medical education programs and campaigns need to be implemented to raise awareness about the condition.

Key Words

Vitamin D deficiency, awareness, healthcare workers, students

What this study adds:

1. What is known about this subject?

Very few studies about awareness of vitamin D among medical students and physicians.

2. What new information is offered in this study?

More information disclosed about the awareness of vitamin D awareness among medical students and physician.

3. What are the implications for research, policy, or practice?

The study highlighted a lack of knowledge about vitamin D deficiency among healthcare professional students and healthcare workers, particularly with regard to the relationship between vitamin D deficiency and diabetes, the role of vitamin D in pregnancy complications, and the correct dose of vitamin D.

Background

Vitamin D is a group of fat-soluble prohormones with diverse forms, including D2 (ergocalciferol) and D3 (cholecalciferol). It is found in plants as well as animals, liver, fish, milk, and eggs in the form of ergocalciferol and cholecalciferol, whereas 7-dehydrocholesterol (provitamin D3) is converted to cholecalciferol in the skin when exposed to sunlight.¹ The daily required dose is 400-800IU/day. Vitamin D deficiency occurs due to a lack of exposure to sunlight and inadequate dietary intake.^{1,2} Several studies have reported the relationship between vitamin D deficiency and many chronic illnesses (e.g., respiratory infections, type 1 diabetes, cardiovascular diseases, obesity, cancer).

In addition, studies have reported the relationship between vitamin D deficiency and anaemia, pre-eclampsia, premature birth, failure to thrive, seizures, asthma, and depression. In children, vitamin D deficiency is related to nutritional rickets, impaired growth, developmental delays, lethargy, and hypocalcaemia-induced seizures.^{1,3-8} Vitamin D is used to treat rickets, osteomalacia, renal osteodystrophy, and hypoparathyroidism.¹ Vitamin D overdose occurs when the level of 25-hydroxycholecalciferol (produced in the liver after hydroxylation of vitamin D3) is more than 150ng/mL.⁹

This leads to hypercalcemia, hyperphosphatemia, normal or low levels of alkaline phosphatase (ALP), high levels of serum 25-hydroxycholecalciferol, low serum parathyroid hormone (PTH), and high urine calcium/creatinine.^{9,10} Recommendations for the required dose of vitamin D vary widely: 400IU for infants, 600IU for ages 1–70 years, 800IU for age>70 years, 400–1000IU for infants, 600–1000IU for ages 1–18 years, and 1500–2000IU for age>19 years. 11

In the last few years, vitamin D deficiency has been considered to be a widespread epidemic, with the consequences of its clinical deficiency among children and adults becoming one of the most interesting and important topics in the medical research field.^{12,13} The Middle East and North African region, including Saudi Arabia, has a very high rate of vitamin D deficiency, with vitamin D deficiency being defined as a level of a level of <50nmol/L (20ng/mL).^{12,13}

The prevalence of vitamin D deficiency is high in Saudi Arabia despite the country's year-round sunny weather.^{12,14} In a 2012 study, Al-Daghri et al. reported higher levels of vitamin D in the winter than summer, which was explained by the fact that people tend to avoid summer sun to prevent sunburn and other detrimental health effects.^{12,14} The authors also reported a higher rate of deficiency among women of all age groups.^{12,14}

A poor level of knowledge and an inadequate level of awareness are two of the main risk factors for vitamin D deficiency. Several studies have been conducted around the world to detect the level of awareness and knowledge about this topic among healthcare providers and healthcare professional students.¹⁵⁻¹⁸

In Saudi Arabia, several studies were conducted to assess the level of awareness among healthcare providers and healthcare professional students.¹⁹⁻²¹

This study aimed to assess the level of awareness and knowledge about vitamin D deficiency and to explore the factors associated with the level of awareness among healthcare workers and healthcare professional students in Jeddah, Saudi Arabia.

Method

This cross-sectional study was conducted from September 2017 to March. A self-administered questionnaire was used to collect the data. The questionnaire was designed by the authors after reviewing previous studies and was validated by three consultants. The questionnaire sent electronically through social media sites including Twitter, Facebook and LinkedIn. Ethical approval was obtained from the ethical committee of King Abdulaziz University. Each participant received an explanation of the aim of the study and then provided verbal informed consent. An initial sample was identified using the Cronbach test. A total 529 physicians and healthcare students in Jeddah, Saudi Arabia answered

the questionnaire and included in analysis. The questionnaire had two parts with 36 questions. The first part collected demographic data (academic year and specialty for students, position and specialty for doctors). The second part examined the participant's knowledge about vitamin D (benefits of use, deficiency, resources, doses, and overdose) (Figures 1–5). The scores were calculated as follows: Each correct answer was given a score of 1, whereas each wrong answer was given a score of 0; the maximum overall score was 34. The collected data were statistically analysed using descriptive statistics by the Statistical Package for the Social Sciences version 20 (IBM, Armonk, NY, USA). Numeric data are presented as means and standard deviations (minimums and maximums), whereas categorical data are presented as numbers (percentages). Comparisons between participants' knowledge based on position and specialty for healthcare providers and academic year and specialty for students were performed using a one-way analysis of variance test. P-values.

Results

Out of 529 participants, 320 (60.5 per cent) were students and 209 (39.5 per cent) were healthcare workers (Table 1).

The results in Table 2 reveal that the overall mean knowledge score among healthcare workers was 20.0 ± 5.5 (58.8 per cent). The overall mean score among healthcare professional students was 15.9 ± 5.5 (46.8 per cent) (Table 2).

When the results were examined by specialty among healthcare workers, significant differences in scores on the usage questions were found. Dental professionals had the highest scores, followed by physiotherapy and pharmacy professionals (p<0.001). A significant difference was also found for scores on the vitamin D source questions, with pharmacy professionals having the highest scores, followed by medical and dental professionals (p=0.03). No significant differences were found for scores in the other domains of deficiency, dose, overdose, and overall scores. For students, a significant difference was found for scores on the resources questions, with medical and applied science students having the highest scores, followed by dental, medical, and nursing students with equal scores (p=0.04).

A significant difference was also found for the overdose knowledge score, with medical and applied science students having the highest scores, followed by nursing, dental, and physiotherapy students with equal scores (p=0.03). No significant differences were found in the other domains of use, deficiency, dose, and overall score (Table 3). When

results were compared according to the position of healthcare workers, a significant difference in scores on the usage questions was found. Residents and consultants had the highest scores, followed by interns (p<0.001).

In addition, a significant difference was found for overall knowledge scores, with interns having the highest scores, followed by consultants and residents (p=0.03). No significant differences were found for the other domains of deficiency, sources, dose, and overdose (Table 4). When results were compared by students' academic years, significant differences were found for usage, sources, and overall knowledge scores. Sixth-year students had the highest scores, followed by fourth-year students and fifthyear students (p<0.0001 for all). A significant difference was also found for deficiency knowledge scores; sixth-year students had the highest scores, followed by fifth-year students and fourth-year students (p<0.0001). Furthermore, a significant difference was found for overdose knowledge scores, with fourth-year students having the highest scores, followed by fifth-year students and sixth-year students (p<0.0001). No significant difference was found regarding dose knowledge (Table 5).

Discussion

This study evaluated the level of awareness and knowledge about vitamin D deficiency and investigated the factors associated with the level of awareness among healthcare students and workers. Lower levels of awareness among healthcare professionals were evidenced in the studies by Al-Elq²² and Munter et al.,¹⁵ which reported low levels of vitamin D among medical students and physicians, respectively. The prevalence of vitamin D deficiency is increasing around the world, affecting both healthy and ill individuals.²²

To solve this global epidemic and decrease the associated morbidity, experts have recommended vitamin D screenings, particularly for those who are in danger of developing this deficiency.¹⁵ However, our results indicate a low level of awareness among healthcare professional students and workers. The results of the current study showed that almost two-fifths of healthcare workers and less than half of the students had an adequate level of knowledge about vitamin D. These findings are consistent with a Riyadh study, in which more than half of the physicians had an adequate level of knowledge.²¹ In the Al-Elq's study, low levels of vitamin D were reported among medical students;²² Munter et al. also reported low levels of vitamin D among physicians.¹⁵ In a study from Pakistan, the majority of students had good levels of knowledge about

vitamin D.23

However, in India, less than half of the students had the appropriate knowledge.¹⁶ These results indicate a poor level of awareness, which contributes to the prevalence of vitamin D deficiency. The results of the current study revealed an average level of knowledge about vitamin D and its sources from sunlight and specific kinds of foods. The majority of the participants from both groups provided correct information about the benefits of sun exposure; however, less than half of the participants stated that people with dark skin and vegetarians are at high risk of developing vitamin D deficiency. In a study from the United Kingdom, the majority of physicians (82 per cent) stated the importance of sun exposure and identified dark skin as a risk factor for vitamin D deficiency.⁶

In a study from Riyadh, the majority of participants stated the importance of sun exposure; however, they were not aware of the optimal time for daily sun exposure.²¹ In a study from India, 30.9 per cent of medical students identified one correct source of vitamin D, 42.4 per cent reported the appropriate time for sun exposure, but only 32 per cent reported the proper duration of sun exposure.¹²

The current study revealed an average level of awareness about the benefits of vitamin D. The majority of participants in the two groups reported the benefits of bone health, dental health, strength of immunity, and muscle strength. However, only one-third of healthcare workers and less than one-third of students reported the benefits of vitamin D for insulin secretion and diabetes prevention. These results are consistent with studies from India (94.4 per cent), Pakistan (93 per cent), and Riyadh,^{16,21,23} but are higher than what has been reported in studies from the United Kingdom (78 per cent) and Australia.^{24,25}

The findings of the current studies revealed very poor knowledge of the right doses, where less than third of healthcare workers and less than fifth of healthcare professional student stated the right doses for both pregnant women and children. Similar result was found in India study, where the majority could not state the right dose.¹⁶ In contrast, in a UK study, 70 per cent of physicians were able to identify the right dose.⁶ The current study indicates average knowledge of the effects of vitamin D deficiency.

The majority of participants in both groups correctly stated the association between vitamin D deficiency and osteoporosis, seizures, growth failure, depression, hair loss, and difficulty concentrating. However, less than half of healthcare workers and one-third of students reported its association with obesity, anaemia, and depression. Less than one-fifth of both groups stated the relationship between vitamin D deficiency and pregnancy problems (preeclampsia, premature birth). In a UK study, 63 per cent of participants were aware of the effects of vitamin D on prematurity.⁶ The current study revealed a good level of knowledge about vitamin D overdose among healthcare workers, with more than two-thirds reporting the correct symptoms.

However, an average level of overdose knowledge was found among students, with less than half reporting the correct symptoms for vitamin D overdose. A significant difference in scores was found among healthcare workers by specialty. Dentists, physicians, and pharmacists showed a higher level of knowledge than other specialties regarding the use and sources of vitamin D. There was also a significant difference among students by their field of study.

Participants who studied dentistry, nursing, and medical and applied science showed a higher level of knowledge than others regarding the overdose and sources of vitamin D. Score comparisons also revealed a significant difference among healthcare workers: interns showed a higher level of knowledge than others regarding the use of vitamin D and overall scores. A score comparison by students' academic years also revealed significant differences: sixth-year students showed a higher level of knowledge than others regarding the use, sources, deficiency, and overdose of vitamin D and higher overall scores. Similar results were reported in a study from Pakistan.²³

Conclusion

The study highlighted a lack of knowledge about vitamin D deficiency among healthcare professional students and healthcare workers, particularly with regard to the relationship between vitamin D deficiency and diabetes, the role of vitamin D in pregnancy complications, and the correct dose of vitamin D. A significant relationship was found between the level of knowledge and the different strata of healthcare workers and students. To the best of our knowledge, this is the first study of its kind to highlight these aspects of awareness about vitamin D deficiency among providers and students. It is imperative that advanced medical educational courses and awareness campaigns be conducted to raise the level of awareness among our study's population groups. Future interventional and qualitative studies can be performed to ascertain the reasons for this lack of knowledge and to determine suitable

approaches to increase awareness about health issues related to vitamin D deficiency.

References

- Arain AA, Ali SM, Phull QZ, et al. Vitamin-D deficiency: a neglected topic alarms the health care providers. J Pak Ortho Assoc. 2017;29(3):86–9.
- Zhang R, Naughton DP. Vitamin D in health and disease: Current perspectives. Nutr J. 2010;9:65. doi: 10.1186/1475-2891-9-65.
- 3. Alshahrani F, Aljohani N. Vitamin D: deficiency, sufficiency and toxicity. Nutrients. 2013;5(9):3605–16.
- 4. Al-Saleh Y, Al-Daghri NM, Khan N, et al. Vitamin D status in Saudi school children based on knowledge. BMC Pediatr. 2015;15:53.
- Sim JJ, Lac PT, Liu IL, et al. Vitamin D deficiency and anemia: a cross-sectional study. Ann Hematol. 2010;89(5):447–52. doi: 10.1007/s00277-009-0850-3.
- Costa-Fernandes N, Adodra A, Blair M, et al. Awareness, knowledge and practice of vitamin D deficiency amongst health care professionals in Northwest London. Arch Dis Child. 2014;99(Suppl 1):A1–A212.
- Vanlint S. Vitamin D and Obesity. Nutrients. 2013;5:949– 956. doi:10.3390/nu5030949.
- Anglin RE, Samaan Z, Walter SD, et al. Vitamin D deficiency and depression in adults: systematic review and meta-analysis. Br J Psychiatry. 2013;202:100–7. doi: 10.1192/bjp.bp.111.106666.
- Vogiatzi MG, Jacobson-Dickman E, DeBoer MD. Drugs, and therapeutics committee of the pediatric endocrine society. Vitamin D supplementation and risk of toxicity in pediatrics: A review of current literature. J Clin Endocrinol Metab. 2014;99(4):1132–41. doi: 10.1210/jc.2013-3655.
- Koul PA, Ahmad SH, Ahmad F, et al. Vitamin D toxicity in adults: a case series from an area with endemic hypovitaminosis D. Oman Med J. 2011;26(3):201–4. doi: 10.5001/omj.2011.49.
- Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.
- Al-Daghri NM. Vitamin D in Saudi Arabia: prevalence, distribution and disease associations. J Steroid Biochem Mol Biol. 2018;175:102–7. doi: 10.1016/j.jsbmb.2016.12.017.
- Alshamsan FM, Bin-Abbas BS. Knowledge, awareness, attitudes and sources of vitamin D deficiency and sufficiency in Saudi children. Saudi Med J. 2016;37(5):579–83. doi: 10.15537/smj.2016.5.14951.
- 14. Perrine CG, Sharma AJ, Jefferds MED, et al. Adherence to

vitamin D recommendations among US infants. Pediatrics. 2010;125(4).

- Munter G, Levi-Vineberg T, Sylvetsky N. Vitamin D deficiency among physicians: a comparison between hospitalists and community-based physicians. Osteoporos Int. 2015;26(6):1673–6. doi: 10.1007/s00198-015-3028-y.
- 16. Lhamo Y, Chugh PK, Gautam SR, et al. Epidemic of vitamin D deficiency and its management: awareness among Indian medical undergraduates. J Environ Public Health. 2017;2017:2517207. doi: 10.1155/2017/2517207.
- Elitok GK, Bulbul L, Zubarioglu U, et al. How should we give vitamin D supplementation? evaluation of the pediatricians' knowledge in Turkey. Ital J Pediatr. 2017;43(1):95. doi: 10.1186/s13052-017-0415-3.
- Arora H, Dixit V, Srivastava N. Evaluation of knowledge, practices of vitamin d and attitude toward sunlight among Indian students. Asian J Pharm Clin Res. 2016;9(1):308–13.
- Aljefree N, Lee P, Ahmed F. Exploring knowledge and attitudes about vitamin D among adults in Saudi Arabia: a qualitative study. Healthcare (Basel). 2017;5(4)76. doi: 10.3390/healthcare5040076.
- 20. Christie FT, Mason L. Knowledge, attitude and practice regarding vitamin D deficiency among female students in Saudi Arabia: a qualitative exploration. Int J Rheum Dis. 2011;14(3):e22–e29. doi: 10.1111/j.1756-185X.2011.01624.x.
- 21. Al-Amri F, Gad A, Al-Habib D, et al. Knowledge, attitude and practice regarding vitamin D among primary health care physicians in Riyadh City, Saudi Arabia, 2015. World JFood Sci Tech. 2017;1(2):47–55. doi: 10.11648/j.wjfst.20170102.13
- 22. Al-Elq AH. The status of Vitamin D in medical students in the preclerkship years of a Saudi medical school. J Family Community Med. 2012;19(2):100–4. doi: 10.4103/2230-8229.98293.
- Qureshi AZ, Zia Z, Gitay MN, et al. Attitude of future healthcare provider towards vitamin D significance in relation to sunlight exposure. Saudi Pharm J. 2015;23(5):523–7. doi: 10.1016/j.jsps.2015.01.004.
- 24. Locyer V, Porcellato L, Gee I. Vitamin D deficiency and supplementation: are we failing to prevent the preventable? Community Pract. 2011;84(3):23–6.
- Bonevski B, Girgis A, Magin P, et al. Prescribing sunshine: a cross-sectional survey of 500 Australian general practitioners' practices and attitudes about vitamin D. Int J Cancer. 2012;130(9):2138–45.

PEER REVIEW

Not commissioned. Externally peer reviewed.

CONFLICTS OF INTEREST

The authors declare that they have no competing interests.

FUNDING

None

Table 1: Demographic data

Variables			%				
	1						
	Physiotherapy	11	5.3				
	Medicine	119	56.9				
	Pharmacy	9	4.3				
	Medical and applied	15	7.2				
	science						
	Nursing	43	20.6				
Healthcare	Dental	11	5.3				
workers	Others	1	.5				
	Position						
	Intern	63	30.1				
	Resident	46	22.0				
	General	26	12.4				
	Consultant	29	13.9				
	Specialist	45	21.5				
	Specialty						
	Physiotherapy	4	1.3				
	Medicine	221	69.1				
	Pharmacy	9	2.8				
	Medical and applied	15	4.7				
	science						
	Nursing	31	9.7				
Healthcare	Dental	37	11.6				
professional	Others	3	.9				
students	Academic Years						
	First year	25	7.8				
	Second year	40	12.5				
	Third year	128	40.0				
	Fourth year	88	27.5				
	Fifth year	22	6.9				
	Sixth year	17	5.3				

ETHICS COMMITTEE APPROVAL

The study was approved by Research Ethics Committee at King Abdulaziz University. Each participant was required to sign an informed electronic consent before starting filling the questionnaire.

Table 2: Knowledge scores

Variables		Mean± SD	Range (min-max)	Total	%
	Use	3.3±1.2	(0-5)	5	66%
	Deficiency	6.6±2.1	(1-12)	12	55%
Healthcare workers	Sources	4.6±1.9	(1-9)	8	57.50%
	Dose	0.9±0.6	(0-2)	2	45%
	Overdose	4.9±2.2	(0-7)	7	70%
	Overall	20.0±5.5	(6-34)	34	58.80%
	Use	2.9±1.2	(0-5)	5	58%
	Deficiency	6.1±1.8	(0-12)	12	50.80%
Healthcare professional students	Sources	3.2±1.9	(0-8)	8	40%
	Dose	0.5±0.2	(0-2)	2	25%
	Overdose	3.5±2.2	(0-7)	7	50%
	Overall	15.9±5.5	(2-34)	34	46.80%

Table 3: Comparison by specialty

Variables		Healthcare workers				Healthcare students			
		Mean	±	SD	p value	Mean	±	SD	pvalue
Use	Physiotherapy	3.8182	±	1.07872		3	±	0.8165	0.98
	Medicine	3.3898	±	1.09415		2.8894	±	1.22729	
	Pharmacy	3.6667	±	1.22474	0.001*	2.8889	±	1.05409	
	Medical and applied science	3.3571	±	1.08182		3.0667	±	1.38701	
	Nursing	2.7442	±	1.32904		2.9355	±	1.12355	
	Dental	4.2727	±	1.10371		3.0811	±	0.98258	
	Physiotherapy	6.4545	±	2.20743		6.5	±	1.73205	
	Medicine	6.6723	±	2.1672		5.986	÷	1.84996	0.76
	Pharmacy	6.1111	±	1.76383		6.3333	±	1.5	
Deficiency	Medical and applied science	5.8667	±	2.32584	0.79	6.6667	±	1.29099	
	Nursing	6.814	±	2.06162		6.1613	±	1.89907	
	Dental	6.9091	±	2.21154		6.0541	±	1.74716	
	Physiotherapy	4.0909	±	1.57826		3	±	1.41421	0.04*
	Medicine	4.9496	±	1.95218		3.0691	±	1.96021	
	Pharmacy	5	±	1.58114		2.4444	±	1.81046	
Sources	Medical and applied science	3.9286	±	2.01778	0.03*	4.4	±	2.1974	
	Nursing	3.814	±	1.77624		3.129	±	1.35995	
	Dental	4.5455	±	2.0181		3.4571	±	1.63316	
	Physiotherapy	0.0909	±	0.30151		0	±	0	0.75
Dose	Medicine	0.6723	±	0.76034		0.21	±	0.53475	
	Pharmacy	0.4444	±	0.72648	0.13	0.2222	±	0.44096	
	Medical and applied science	0.3333	±	0.61721		0.4286	±	0.75593	
	Nursing	0.6047	±	0.84908		0.2	±	0.48423	
	Dental	0.3636	±	0.50452		0.2432	±	0.548	

Overdose	Physiotherapy	4.6364	±	3.00908	0.16	4	±	1.41421	0.04*
	Medicine	5.1513	±	2.24605		3.2477	±	2.18389	
	Pharmacy	4.6667	±	1.41421		3.7778	±	1.7873	
	Medical and applied science	4.4667	±	2.26358		4.4286	±	2.34404	
	Nursing	4.186	+I	2.02668		4.3333	+I	2.10637	
	Dental	5.5455	±	2.06706		4	+I	2	
Overall	Physiotherapy	19.0909	±	6.48775	0.84	16.5	÷	4.65475	0.19
	Medicine	20.8644	±	5.29298		15.38	±	5.75161	
	Pharmacy	19.8889	+I	3.40751		15.666	±	4.92443	
	Medical and applied science	18.4615	±	5.89654		19.0714	±	6.05696	
	Nursing	18.1628	±	5.77321		16.7241	+I	4.47929	
	Dental	21.6364	±	5.73189		16.9118	±	3.91088	

Table 4: Comparison by position of healthcare workers

Variables		Mean	±	SD	p value	
	Intern	3.5246	±	1.14901		
Use	Resident	3.6087	±	1.12503		
	General	3.2308	±	1.50486	0.001*	
	Consultant	3.5517	±	0.98511		
	Specialist	2.6889	±	1.06221		
	Intern	6.7619	±	2.10003		
	Resident	7	±	2		
Deficiency	General	6.4231	±	2.45231	0.47	
	Consultant	6.4483	±	2.16442		
	Specialist	6.2444	±	2.10147		
	Intern	4.9048	±	1.93202		
	Resident	4.6304	±	1.91321		
Resources	General	4.52	±	2.0232	0.06	
	Consultant	4.931	±	2.0862		
	Specialist	3.8667	±	1.67332		
	Intern	0.7143	±	0.85059		
	Resident	0.6087	±	0.61385		
Dose	General	0.4231	±	0.70274	0.35	
	Consultant	0.5172	±	0.78471		
	Specialist	0.4667	±	0.72614		
	Intern	5.1429	±	2.30607		
	Resident	4.9783	±	2.1857		
Overdose	General	4.3462	±	2.57592	0.05	
	Consultant	5.5517	±	1.86291		
	Specialist	4.2	±	2.02933		
Overall	Intern	21.1475	±	5.31926		
	Resident	20.8261	±	4.97239		
	General	19.24	±	6.72235	0.005*	
	Consultant	21	±	5.33854		
	Specialist	17.4667	±	5.08831		

Table 5: Comparison by academic year

Vari	ables	Mean	±	SD	p value
	First year	2.6522	±	1.22877	
Use	Second year	2.65	±	1.27199	
	Third year	2.68	±	1.24175	0.0001*
	Fourth year	3.3409	±	1.01581	0.0001*
	Fifth year	3.1364	±	0.94089	
	Sixth year	3.3529		0.86177	
	First year	6.08	±	1.73013	
	Second year	5.5641	±	1.56936	
Deficience	Third year	5.7165	±	1.92683	0.0001*
Deficiency	Fourth year	6.4588	±	1.64428	0.0001*
	Fifth year	6.75	±	1.80278	
	Sixth year	7.1176		1.16632	
	First year	2.4	±	1.41421	
	Second year	2.375	±	1.46213	
Courses	Third year	2.75	±	1.79676	0.0001*
Sources	Fourth year	4.0732	±	1.9295	0.0001*
	Fifth year	3.5455	±	1.65406	
	Sixth year	4.7647		1.85504	
	First year	0.1667	±	0.38069	
	Second year	0.25	±	0.58835	
Dava	Third year	0.1349	±	0.44458	0.05
Dose	Fourth year	0.2414	±	0.58995	0.05
	fifth year	0.3636	±	0.58109	
	Sixth year	0.5294		0.71743	
	First year	3	±	2.14679	
	Second year	2.4359	±	2.13732	
Overdese	Third year	3.432	±	2.01741	0.0001*
Overdose	Fourth year	4.2857	±	2.13728	0.0001
	Fifth year	3.7619	±	2.40634	
	Sixth year	3.5294		2.32157	
Overall	First year	14.0909	±	3.96303	
	Second year	13.2105	±	5.26671	
	Third year	14.7395	±	5.37329	0.0001*
	Fourth year	18.4416	±	5.08996	0.0001
	Fifth year	17.4737	±	5.02625	
	Sixth year	19.2941		4.20958	

Figure 1: Use knowledge

Figure 2: Deficiency knowledge

Figure 3: Resources knowledge

Figure 4: Dose knowledge

Figure 5: Overdose knowledge

